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SUMMARY

An approximate method 1s presented for calculating the pressure
distribution on conical bodies of noncircular cross section in a super-
sonic flow field. By a superposition of elementary conical flows due
to line sources, the flow about an arbitrary cone may be described.
Tllustrations of the pressure distribution about several shapes are
included to demonstrate the method. The problem of such a body at
angle of attack may also be solved by the same method, as well as the
problem of yawed flight at angle of attack.

INTRODUCTION

Linearized methods have been applled to determine sclutions of
the supersonic flow field about both sclid and open-nosed bodies of
revolution. (See references 1 to 4.} The methods of reference 1 have
been extended herein to produce a linearized solution for cones of arbi-
trary cross section, such as might serve as forebodies of nonsymmetrical
fuselages. The solution is based on the use of a combination of line
gources inclined srbitrarily to the flow dlirection. If the proper, sources
are chosen, any conical hody shape can be described and the resulting
surface pressures can be calculated.

The method presented herein wes devised during the fall of 1947
at the NACA Cleveland laboratory.
SYMBOLS
The following symbols are used in this gnalysis:
c pressure coefficlent

iy
c,d semi-axes of ellipse
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congtant proportional to source strength
free-stream Mach number
glope of line source with respect to flow direction

component, normal to flow direction, of distance from point
on line source to arbitrasry point in flow field

free-stream veloclty

component of total velocity normal to body at surface

radial (cylindrical coordinate) perturbation-veloclty component
axial perturbatlion-velocity component

tangential (cylindrical coordinaste) perturbation-velocity component
¢ylindricel coordinates

cotangent of Mach angle, qu -1

anguler position of line source, measured from & ='n/2 plane

angle between radial veloclty and normasl to body, measured in
x = constant plane

angle whose tangent is ratio of radial to exlael coordinates
of point on body surface, tan L r/x

axial coordinate of .1ine source

source strength ver unit of axial length
perturbation-velocity potential

angle between normal to body surface and normal to ray,

which intersects axis of body

GENERAL ANALYSIS

In the solution of the pressure distribution over a body, a method

of successive approximation is used. A perturbation-veloclty potential
based on linearized flow 1s found from which the three velocity components
mey be determined. If these velocities satisfy the boundary conditions
for the desired body, the potential describes the flow about the actual

body.

The pressure coefficient mey then be found from
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Cp = = ZUX/U (1)

The perturbation-velocity potentlal mey not be assumed com-
pletely arbitrerily, but is subjJect to several general limibations
and to some particular ocnes imposed by the body. The particular
limitations form a guide in the selection of the potential. The
two general limitations are: (1) tke potential must satisfy the
Prendtl-Glauert egquation; and (2) under the conditions of linear-
ized flow, the disturbance velocitlies should disappear at the Mach
cone.

The Prandtl-Glauert equation for compressible frictionless
potential flow, in linearized form and cylindrical coordinates lis

s . 3% 10 £\ .130_,
(M'l)gxﬁé P 08 25 2

A line source OT of strength per unit length f(£), lying
in the plane 6 = [(x/2) + 8], whose slope with respect to the
flow direction 1s m, is shown in figure 1. The potential at scme
point P due to such a disturbance is

x-RB
o=L £(E)at (3)
J(t - )2 - pexe

0

where R 1s, from the goometry of figure 1, defined by
R% = ¥% + (mf)? - omtr sin (6 - B) (4)

This potential can readily be shown by direct substlitution to
satisfy equation (2).

Combining equations (3) and (4) and resrranging the terms
result in
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The limits of integration are the origin [ = 0, because there is no disturbance
ehead of it and no disturbenceés are propagated upstream; and £ = x - RE, because nc part
of the line source beyord that point includes the point (x,r,8) within its Mach cone.

BEquation (5) is of the seme form as equation (3), and can be readily integrated if

f(¢) is assumed proportional to ¢ : that 18, £(f) = ( - 411’K‘l - mzsz)ﬁ . Integration under
this condition givesm

P =K £x2 - rZ_BZ - !;" mrﬂz sin (o - 5)-1 JP | !' X - :n:J:'B2 sin (6 - 5) ]1
Ul - m,EBZ [ 1 - ngz _I A VE( _ m:Eaisini ('9 - 8)]2 - (xz _ I‘ZBZ)(l-mzﬁziJ

6)

The perturbation-velocity compoments U,, Uy, and Uy, respectively, can be found by dif-
ferentiating equation (6} with respect to r, x, and 6:

~
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If m=0, that is, I1f the line source is in the flow direction, these equations reduce
to those developed by von Kefrmeén and Moore for the flow about & right circular cons (esee

reference 1).
252
U = K% d;_rvzﬂ (7a)
\ X

4 X :
Uy = -K cosh™l 15 (8a)

Uy, =0 (98)
The boundery condition for a particuler flow requires that the velocity mormal to the
body at the surface be zero. In figure 2(a), O'F is normal to the x-axis and intersects 1%;
0'G 18 normal to a ray 00' of the body end intersects the x-axis; O'H 1s normal to the
body surface; O'L is normal to the contour of the body section found by cutting the bodq'
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From figure 2(a),

Un =0 = |:Ur cos v '.(U+Ux) sin v]cos V- U, sin v

or
tan '
Ur-Ueaosz=(U+Ux)tanv (10)

But, also from figure 2(a),
tan ¥ = tan A cos v (11)

and, with reference to figure 2(b),

dr
= < 2
tan A T | (12)
vhere r = f£(8) 1is the equation of the body cross section. If equa-
tions (10) to (12) are cambined, the boundary condition for the flow
is obtained:

1 dr r =
Ur-;EUG-—-(U-FUx)SE (13)

The second general condition for linearized conilcal flow, stated
previously, is that the perturbation velocities approach zero as the
Mach cone is approached, or as rB/x approaches unity. Thils con-
dition is exactly true for equations (7) to (9).

The potential found from the single-line source that has been
considersd until now is insufficient to calculate the flow about an
arbitrary body. Because the potential due to one source satisflies
the general limitations of the problem, however, a serles of poten-
tials due to & number of sources of various strengths and positions
can be so added together that the resulting flow satisfies the bound-
ary conditions for the particular body in question and thus can be
assumed to be the desired flow.

Four parameters are consldered in selecting the source pattern:
the angular position 8, the slope of each source relative to the
flow direction m, the number of sources, and the strength of each.

APPLICATION COF METHCD

Beceuse the perturbation velocities are functions of only r/x
and 6, the resulting body contours are conlcel and only one body
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section that is in a plane normel to the free-stream-flow direction
need be congidered. The problem is thereby reduced to two dimensions
and ‘the body 1s completely described by one plane, as in figure 3.
The line sources thus appesr in such a* figure simply as points.

With the use of several sources of varylng strength and position,
the boundary condition, defined by equation (13), can be made to yield
the flow ebout the desired body shape. Although such a solution is
found largely by trlel and error, some general rules for the selection
of sources ylelding a specified body shape can be established. The

four parameters previously mentioned, that is, the angular posi-
tion 5, the slope of the line sources m, the number of sources, and

the source strength, must be kept in mind.

l. The axes of symmetry of the body section should be noted,
inasmuch as -the sources must be symmetrically arranged relative to
the pame axes.

2. The source nesrest to a peek in the sectlion should be nearer
‘o that voint than to any other polnt on the section because the per-
turbation velocitlies due to the body are a maximum at the peak and,
inasmuch as veloclitles due to the source increase as the distance
from the source decreases, the point closest to the source has the
highest velocity. The distance from a point on the body to the
nearest source must therefore be equal to or less than the radius-
of curvature of the body section at that polint.

3. If' the body is elongated, a series of sources in a line are
required. The slenderer the section, the more sources are needed
to prevent contour lrrsgularities in the body described by the
resulting solution (eguation (13)). Also, for a given body of this
type, as the section narrows the sources should be closer together.

4. In general, the larger the number of sources used, the more
closely the linearized {low- obtained filits the body in question and
the fewer are the number of trial solutions required to obtain a
satisfactory answer. BEach such solution, however, is more laborious
then one using fewer sources. )

To summarize, the angular position of the sources 1s determined
by rules 1 and 2, the distance from the axis by 1, 2, and 3, and the
number of sources by 1l and 3. Rule 4 serves as an.over-all guide.
Only K, which is proportional to the source strengths, remains to
be determined. TFram the symmetry condition, sources that are in the
same position relative to the axes of symmetry-have the same strength.
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With a known number of different source strengths, equation (13) may

be solved for the strengths at the same number of points on the surface
by using equations (7) to (9). The potential is now completely defined.
This potential should then be checked in equation (13) at several points
on the body to determine whether the flow due to the -source potential
1s the same as that over the actual body. It should be noted that

the strength of a source may be negative.

The case of flow at angle of attack can be solved by consldering,
at zero angle, & body whose crogs section consists of sections of the
actual body taken normal to the free stream instesd of normal to the
exis. The x-zxis of the new body is then parallel to the flow direc-
tlon. For a small angle of attack, the two cross sections probably
differ little, but their positions relative to the coordinate axes
differ. The case of yawed flight at angle of atbtack can be solved
in a similar menmer (Ffig. 4).

Examples

Several examples follow to illustrate the general rules that
have been outlined:

le I. - Assume that an elliptic section (fig. 3) 1s desired.
Fram the symmetry condition, two sources are assumed as a first approx-
Imation to such a section. These sources ere of egual strength, equi-
distent from the x-axls, and at & =0 and B = n. The velocities
are found from equations (7) to (9).

The equatlion of an ellipee is

2 a2q2
r =

2 2 2
d sin @ + ¢ c:os2 e
vhere ¢ and 4 ere major and minor semi-sxes, respectively.

From this relation, may be obtalned:

1dr
r de

%g_r_ _ sin 6 cos 8+ (c2-a?) (14)

de d.z s:l.n2 6 + c2 c:oxss2 8

When & Mach number and values for ¢ and 4, are given, a position
for the sources (that is, & value of m) is selected. From the
second general ruvle, ¢ -m of figure 3 should be somewhat less than
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the radius of curvature at c, n/z. With this gulde, a value of m
can be assumed. From the coordinates of one point on the surface KX/U
can be found by substitutionof equations (7) to (92) and (14) in equa~
tion (13). Several other points should then be checked in the boundary
relation. If agreement is poor, the sources should be moved and per-
haps others sdded. When g potential is obtained that satisfies equa-
tion (13) closely enough, the pressure coefficient can then be found
from equation (1).

An example of the results of such a calculation is shown in
figure 3. The body shepe obtained by using the value of X previ-
ously determined and by solving equation (13) for r/x as a function
of 6 1is shown together with the desired shape. In this example, wkere
the contour is almost circular, the pressure distribution approximately
follows the body shape. The deviation of the calculated section from
the desired ellipse could be considerably decreased by placing the two
sources farther apart and adding a third source at the origin.

If the flow about an ellipse having a larger ratio of major to
minor axes than was used in figure 3 is desired, the perturbation-velocity
potential for two sources gives poor results. The effect of varying K
while holding m constent is shown in figure 5. A similar result is
obtained by holding the length of one of the axes constant and verying
the length of the other by changing m, while holding the source strength
constant. In order to obtain a satisfactory solution for an ellipse having
the ratio of the axes much greater than that in figure 3, a series of sources
can be usmed.

le IT. - Assume that an ellipse having the ratio of major to
minor axes equal to 3 is desired. (See fig. 6.) Obviously, for symmetry,
a number of source pairs, as used in the previous example, plus perhaps
& single source at the origlin, will give the desired solution. The position
of source 1 in figure 6 may be assumed from the condition that its distance
from the peak must be spproximately the radius of curvature at the peak.
The distance between sources 1 and 2 is taken as about equal to the distance
from source 2 to the nearest point on the body. The remaining sources may
be similerly chosen. This procedure gives a system of three source pairs
whose velocltles are found from equations (7) to (9), and a single source
whose velocities are found from equations (7a) and (8a), which are simply
the velocities found when m is zero. When equation (13) is solved for
this system of sources at four points on the body, K> » Kz, and
(fig. 6) are determined and the pressure coefficlent can be Pound from

equation (1).

The desired ellipse and the contour calculated by the use of seven
sources are shown In flgure 6 together with the pressure distribution
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corresponding to the source configuration. In this example the section
deviates greatly from a circle and the pressure distribution no longer
follows the body contour. The maximum and minimum values of the pres-
sure coefficient, however, still occur at the maximum and minimum points,
respectively, on the section.

Example IJXY. - Now assume that the pressure distribution is desired
over & body whose cross section is a triangle modified by rounding the
vertices (fig. 7). From symestry considerations, three sources of equal
strength should be assumed at & = 0, 2x/3, and 4x/3. These sources
should be placed at approximately the center of curvature of the vertices.
Because the body is spproximately circular, a source that is not of the
same strength as the others should be placed at the origin.

The velocity components can then be calculated from equations (7)
to (9) and the strength of the sources can be established by solving
equation (13) at two points.

Such a surface, with the corresponding pressure distribution, ie
illustrated in figure 7. As in the first exsmple, the pressure distri-
bution followe the trends of the bhody shape.

It mst be remembered that the examples given are meant to illustrate
the method of solution of such bodies rather than to show actual pressure
distributions, although the trends indicated should be correct. The hodies
chosen are probably not slender enough for great accuracy in a linearized
solution.

SUMMARY OF ANALYSIS

An approximate method has been presented for calculating the
pressure distribution on conical bodies of arbitrary cross section in
supersonic flow. By a combination of elementary conicel flows due to
line sources, the flow about a slender arbitrery cone can be described.
Four parameters are considered in determining such a system of sources:
the spacing of the sources around an axis lying in the flow direction,
the slope relative to the flow, the number of sources, and their strength.
The first three parameters can be determined by several conditions.
First, the same symmetries will hold for the sources as for the body.
Second, the distence from a peak to a source will be lesa than or squal
to the radius of curvature at that point. Third, for an elongated body,
the slenderer the section, the closer together the sources must be.
Finally, the greater the number of sources used, the more accurately
the desired body can he approximated. The solution will be more labo-
rious, however, if more sources are used. The fourth parsmeter, source
strength, may be found by direct calculation.
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The case of a conicel body at angle of attack and of yawed flight

can be solved by the same method.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohlo, April 27, 1948.
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Filgure 1, — Geometric relations defining one arbitrary line
source and its relation to a point P 1in flow fleld,
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Flgure 4.- Comparison of body at zero angle of attack

and zero yaw with same body at angle of attack and in
yawed flight,
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